COMPARISON OF GENERALIZED CROSS VALIDATION (GCV) METHODS WITH CROSS VALIDATION (CV) TO DETERMINE OPTIMAL KNOTS IN FOURIER SERIES NONPARAMETRIC REGRESSION (Case Study: Poverty Rate in North Sumatra Province)
DOI:
https://doi.org/10.51402/jle.v3i1.5Keywords:
Poverty, GCV, CV, Nonparametric Regression, Fourier SeriesAbstract
Poverty is multidimension problem that directly affected human life. North Sumatera Province is a province with the most poor population in Sumatera Island that is 1453.87 (thousand souls). A factor thought to affect the high poverty rate in the northern province of sumatera is per capita income. Distribution of data on the number of poor people and per capita income of each regency/city in North Sumatera Province tends to be repetitive and the pattern is unknown, then in this study used a nonparametric regression approach of fourier series. The purpose of this study is to model poverty in regency/city in North Sumatera Province using nonparametric regression fourier series with GCV and CV methods to determine the optimal knots (K) and compare the results of modelling based on GCV and CV methods to determine the optimal K in nonparametric regression with fourier series. The population in this study were all regency/cities in North Sumatera Province, amounting to 33 regency/cities. The results showed that the GCV method in determining the optimal K in the nonparametric regression of the fourier series was better than the CV method for modelling poverty levels in North Sumatera Province. The GCV method produces an R2 of 96% with an MSE value of 52.14 while the CV method produces an R2 67% with an MSE value of 463.62. The results of the analysis of poverty level modelling in North Sumatera Province in 2017 with the GCV method for determining optimal K in nonparametric regression of fourier series obtained the highest poverty estimate of 134.52 (thousand inhabitants) found in Medan City and the lowest poverty estimate of 11.05 (thousand inhabitants) found in Pakpak Bharat Regency.
References
Asrini, Luh Juni. 2012, Regresi Semiparametrik Deret Fourier, Prosiding Seminar Nasional FMIPA Universitas Negeri Surabaya, hal.77-80, 24 November 2012.
Badan Pusat Statistik Sumatera Utara. 2002. Sumatera Utara dalam Angka. BPS: Medan.
Badan Pusat Statistik Sumatera Utara. 2018. Sumatera Utara dalam Angka. BPS: Medan.
Cahyat Ade, Gonner Christian, Haug Michaela. 2007. Mengkaji Kemiskinan dan Kesejahteraan Keluarga. Bogor: Cifor.
Devi, Alvita Rachama, 2015, Metode Unbiased Risk (UBR) dan Cross-Validation (CV) untuk Pemilihan Titik Knot Optimal dalam Regresi Nonparametrik Multivariabel Spline Truncated, Tesis,Statistika, Institut Teknologi Sepuluh November, Surabaya.
Eubank, R. 1999. Nonparametric Regression and Spline Smoothing 2nd Edition. Marcel Deker. New York.
Hardle, W. 1994. Applied Nonparametric Regression. New York: Cambrige University Press.
Nurjanah, F., 2015, Model Regresi Nonparametrik Dengan PendekatanDeret Fourier Pada Pola Data Curah Hujan Di Kota Semarang, Skripsi, Statistika Universitas Muhammadiyah Semarang, Semarang.
Prahutama, A., 2013, Model Regresi Nonparametrik dengan Pendekatan deret Fourier pada Kasus Tingkat Pengangguran Terbuka di Jawa Timur, In Prosiding Seminar Nasional Statistika Universitas Diponegoro 2013.
Prahutama, A., Devi, A.R., Santoso, R., Suparti. 2018. Regresi Nonparametrik. Ponorogo : Wade Group.
Pulungan, M. H., 2016, Analisis Faktor-faktor yang Mempengaruhi Tingkat Kemiskinan di Provinsi Sumatera Utara, Skripsi, Ilmu Ekonomi Institut Pertanian Bogor.
Puspita, D. W. 2015. Analisis Determinan Kemiskinan di Provinsi Jawa Tengah. JEJAK Journal of economics and policy, 8 (1):100-107.doi: http: //dx.doi.org/ 10.15294 /jejak.v8i1.3858.
Untoro, Joko. 2010. Ekonomi. Jakarta : Kawahmedia.
Wu, H. dan Zhang, J.T. 2006. Nonparametric Regression Methods for Longitudinal Data Analysis, A John-Wiley and Son Inc. Publication, New Jersey.