PEMODELAN JUMLAH KASUS PENYAKIT KUSTA DI PROVINSI SULAWESI TENGGARA MENGGUNAKAN METODE REGRESI POISSON INVERSE GAUSSIAN

PEMODELAN JUMLAH KASUS PENYAKIT KUSTA DI PROVINSI SULAWESI TENGGARA MENGGUNAKAN METODE REGRESI POISSON INVERSE GAUSSIAN

Authors

  • Moh Yamin Darsyah Universitas Islam Negeri Walisongo Semarang
  • M Nurul Ramadhan Universitas Muhammadiyah Semarang

DOI:

https://doi.org/10.51402/jle.v3i1.9

Keywords:

Leprosy, Poisson Inverse Gaussian Regression, Overdipersion

Abstract

Leprosy data is census data so in its modeling, it can use Poisson regression. Leprosy data also has the potential to experience overdispersion so that in overcoming the case of overdispersion, several models are formed which are a combination of the Poisson distribution with several distributions both discrete and continuous (mixed Poisson distribution). One of them is the distribution of Poisson Inverse Gaussian (PIG) which is a mixed Poisson distribution with random effects that have the Gaussian inverse distribution. In the application of a Poisson Inverse Gaussian regression method, factors are affecting the occurrence of leprosy in Southeast Sulawesi. As for the factors namely the population density, the residents who experience health complaints and ever ambulatory care, the use of clean water, the Clean and Healthy Behavior (PHBS) Households, the health facilities, the health workers, and the economic growth from the BPS website and the Profile of the Health Office of Southeast Sulawesi Province in the PDF appendix. The results of data analysis and discussion, the Poisson Inverse Gaussian regression model are obtained with a significant variable to the model that is the percentage of population density and the percentage of clean water use. With the addition of 1 ratio to the percentage of population density will be proportional to the increase in the average number of leprosy in Southeast Sulawesi Province by 1.00177. And with the addition of 1 ratio on the percentage of the use of clean water, it would be comparable to the average increase in the number of leprosy in southeast Sulawesi province by 1.01205

References

Asrini, Luh Juni. 2012, Regresi Semiparametrik Deret Fourier, Prosiding Seminar Nasional FMIPA Universitas Negeri Surabaya, hal.77-80, 24 November 2012.

Badan Pusat Statistik Sumatera Utara. 2002. Sumatera Utara dalam Angka. BPS: Medan.

Badan Pusat Statistik Sumatera Utara. 2018. Sumatera Utara dalam Angka. BPS: Medan.

Cahyat Ade, Gonner Christian, Haug Michaela. 2007. Mengkaji Kemiskinan dan Kesejahteraan Keluarga. Bogor: Cifor.

Devi, Alvita Rachama, 2015, Metode Unbiased Risk (UBR) dan Cross-Validation (CV) untuk Pemilihan Titik Knot Optimal dalam Regresi Nonparametrik Multivariabel Spline Truncated, Tesis,Statistika, Institut Teknologi Sepuluh November, Surabaya.

Eubank, R. 1999. Nonparametric Regression and Spline Smoothing 2nd Edition. Marcel Deker. New York.

Hardle, W. 1994. Applied Nonparametric Regression. New York: Cambrige University Press.

Nurjanah, F., 2015, Model Regresi Nonparametrik Dengan PendekatanDeret Fourier Pada Pola Data Curah Hujan Di Kota Semarang, Skripsi, Statistika Universitas Muhammadiyah Semarang, Semarang.

Prahutama, A., 2013, Model Regresi Nonparametrik dengan Pendekatan deret Fourier pada Kasus Tingkat Pengangguran Terbuka di Jawa Timur, In Prosiding Seminar Nasional Statistika Universitas Diponegoro 2013.

Prahutama, A., Devi, A.R., Santoso, R., Suparti. 2018. Regresi Nonparametrik. Ponorogo : Wade Group.

Pulungan, M. H., 2016, Analisis Faktor-faktor yang Mempengaruhi Tingkat Kemiskinan di Provinsi Sumatera Utara, Skripsi, Ilmu Ekonomi Institut Pertanian Bogor.

Puspita, D. W. 2015. Analisis Determinan Kemiskinan di Provinsi Jawa Tengah. JEJAK Journal of economics and policy, 8 (1):100-107.doi: http: //dx.doi.org/ 10.15294 /jejak.v8i1.3858.

Untoro, Joko. 2010. Ekonomi. Jakarta : Kawahmedia.

Wu, H. dan Zhang, J.T. 2006. Nonparametric Regression Methods for Longitudinal Data Analysis, A John-Wiley and Son Inc. Publication, New Jersey.

Downloads

Published

2022-04-20

How to Cite

Darsyah, M. Y. ., & Ramadhan, M. N. (2022). PEMODELAN JUMLAH KASUS PENYAKIT KUSTA DI PROVINSI SULAWESI TENGGARA MENGGUNAKAN METODE REGRESI POISSON INVERSE GAUSSIAN : PEMODELAN JUMLAH KASUS PENYAKIT KUSTA DI PROVINSI SULAWESI TENGGARA MENGGUNAKAN METODE REGRESI POISSON INVERSE GAUSSIAN . Jurnal Litbang Edusaintech, 3(1), 11-24. https://doi.org/10.51402/jle.v3i1.9